277 research outputs found

    Rattling and freezing in a 1-D transport model

    Full text link
    We consider a heat conduction model introduced in \cite{Collet-Eckmann 2009}. This is an open system in which particles exchange momentum with a row of (fixed) scatterers. We assume simplified bath conditions throughout, and give a qualitative description of the dynamics extrapolating from the case of a single particle for which we have a fairly clear understanding. The main phenomenon discussed is {\it freezing}, or the slowing down of particles with time. As particle number is conserved, this means fewer collisions per unit time, and less contact with the baths; in other words, the conductor becomes less effective. Careful numerical documentation of freezing is provided, and a theoretical explanation is proposed. Freezing being an extremely slow process, however, the system behaves as though it is in a steady state for long durations. Quantities such as energy and fluxes are studied, and are found to have curious relationships with particle density

    Resonances and Twist in Volume-Preserving Mappings

    Full text link
    The phase space of an integrable, volume-preserving map with one action and dd angles is foliated by a one-parameter family of dd-dimensional invariant tori. Perturbations of such a system may lead to chaotic dynamics and transport. We show that near a rank-one, resonant torus these mappings can be reduced to volume-preserving "standard maps." These have twist only when the image of the frequency map crosses the resonance curve transversely. We show that these maps can be approximated---using averaging theory---by the usual area-preserving twist or nontwist standard maps. The twist condition appropriate for the volume-preserving setting is shown to be distinct from the nondegeneracy condition used in (volume-preserving) KAM theory.Comment: Many typos fixed and notation simplified. New nthn^{th} order averaging theorem and volume-preserving variant. Numerical comparison with averaging adde

    Differentially Private Distributed Optimization

    Full text link
    In distributed optimization and iterative consensus literature, a standard problem is for NN agents to minimize a function ff over a subset of Euclidean space, where the cost function is expressed as a sum ∑fi\sum f_i. In this paper, we study the private distributed optimization (PDOP) problem with the additional requirement that the cost function of the individual agents should remain differentially private. The adversary attempts to infer information about the private cost functions from the messages that the agents exchange. Achieving differential privacy requires that any change of an individual's cost function only results in unsubstantial changes in the statistics of the messages. We propose a class of iterative algorithms for solving PDOP, which achieves differential privacy and convergence to the optimal value. Our analysis reveals the dependence of the achieved accuracy and the privacy levels on the the parameters of the algorithm. We observe that to achieve ϵ\epsilon-differential privacy the accuracy of the algorithm has the order of O(1ϵ2)O(\frac{1}{\epsilon^2})

    Pricing and hedging game options in currency models with proportional transaction costs

    Get PDF
    The pricing, hedging, optimal exercise and optimal cancellation of game or Israeli options are considered in a multi-currency model with proportional transaction costs. Efficient constructions for optimal hedging, cancellation and exercise strategies are presented, together with numerical examples, as well as probabilistic dual representations for the bid and ask price of a game option

    Infinitely Many Stochastically Stable Attractors

    Full text link
    Let f be a diffeomorphism of a compact finite dimensional boundaryless manifold M exhibiting infinitely many coexisting attractors. Assume that each attractor supports a stochastically stable probability measure and that the union of the basins of attraction of each attractor covers Lebesgue almost all points of M. We prove that the time averages of almost all orbits under random perturbations are given by a finite number of probability measures. Moreover these probability measures are close to the probability measures supported by the attractors when the perturbations are close to the original map f.Comment: 14 pages, 2 figure

    Representation of Markov chains by random maps: existence and regularity conditions

    Full text link
    We systematically investigate the problem of representing Markov chains by families of random maps, and which regularity of these maps can be achieved depending on the properties of the probability measures. Our key idea is to use techniques from optimal transport to select optimal such maps. Optimal transport theory also tells us how convexity properties of the supports of the measures translate into regularity properties of the maps via Legendre transforms. Thus, from this scheme, we cannot only deduce the representation by measurable random maps, but we can also obtain conditions for the representation by continuous random maps. Finally, we present conditions for the representation of Markov chain by random diffeomorphisms.Comment: 22 pages, several changes from the previous version including extended discussion of many detail

    Stochastic stability at the boundary of expanding maps

    Full text link
    We consider endomorphisms of a compact manifold which are expanding except for a finite number of points and prove the existence and uniqueness of a physical measure and its stochastical stability. We also characterize the zero-noise limit measures for a model of the intermittent map and obtain stochastic stability for some values of the parameter. The physical measures are obtained as zero-noise limits which are shown to satisfy Pesin?s Entropy Formula
    • …
    corecore